\( \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\uHom}{\,\underline{\!Hom\!}\,} \DeclareMathOperator{\Mor}{Mor} \DeclareMathOperator{\Map}{Map} \DeclareMathOperator{\map}{map} \DeclareMathOperator*{\colim}{colim} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\Id}{Id} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\comp}{comp} \DeclareMathOperator{\Fun}{Fun} \DeclareMathOperator{\true}{true} \DeclareMathOperator{\Sub}{Sub} \DeclareMathOperator{\Lan}{Lan} \DeclareMathOperator{\Ran}{Ran} \DeclareMathOperator{\PSh}{PSh} \DeclareMathOperator{\Sh}{Sh} \DeclareMathOperator{\Sp}{Sp} \DeclareMathOperator{\Glue}{Glue} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\oneim}{1im} \DeclareMathOperator{\twoim}{2im} \DeclareMathOperator{\charr}{char} \DeclareMathOperator{\Spec}{Spec} \newcommand{\ProFinSet}{\mathrm{ProFinSet}} \newcommand{\sSet}{\mathrm{sSet}} \newcommand{\Top}{\mathrm{Top}} \newcommand{\deltacat}{\boldsymbol{\Delta}} \newcommand{\Cat}{\mathrm{Cat}} \newcommand{\Set}{\mathrm{Set}} \newcommand{\Ring}{\mathrm{Ring}} \newcommand{\CatMon}{\mathrm{CatMon}} \newcommand{\Cof}{\mathrm{Cof}} \newcommand{\Fib}{\mathrm{Fib}} \newcommand{\Frm}{\mathrm{Frm}} \newcommand{\Loc}{\mathrm{Loc}}\)

Adjunction in a \( 2 \)-Category

For any \( 2 \)-category \( \mathcal C \) we can define what an adjunction is in \( \mathcal C \) using the Adjunctions via Unit and Counit, because this definition canonically lives in the \( 2 \)-world. Then an adjunction in the strict \( 2 \)-category \( \Cat \) is just a normal adjunction between functors.

Let \( \mathcal C \) be a \( 2 \)-category. An adjunction in \( \mathcal C \) consists of

such that

\begin{equation*} \xymatrix{ x \ar@{->}[r]_{l} \ar@/^1.5pc/@{->}[rr]^{1_x}="1" & y \ar@{->}[r]^{r} \ar@/_1.5pc/@{->}[rr]_{1_y}="2" & x \ar@{->}[r]^{l} & y \ar@{=>}"1";"1,2"^{\eta} \ar@{=>}"1,3";"2"^{\epsilon}} = \xymatrix{ x \ar@/^1.5pc/[r]^l="1" \ar@/_1.5pc/[r]_l="2" & y \ar@{=>}"1";"2"^{1_l}} \end{equation*}

and

\begin{equation*} \xymatrix{ y \ar@{->}[r]^{l} \ar@/_1.5pc/@{->}[rr]_{1_y}="2" & x \ar@{->}[r]^{r} \ar@/^1.5pc/@{->}[rr]^{1_x}="1" & y \ar@{->}[r]_{l} & x \ar@{=>}"1";"1,3"^{\eta} \ar@{=>}"1,2";"2"^{\epsilon}} = \xymatrix{ y \ar@/^1.5pc/[r]^r="1" \ar@/_1.5pc/[r]_r="2" & x \ar@{=>}"1";"2"^{1_r}} \end{equation*}

Author: Frederik Gebert

Created: 2025-02-10 Mon 21:45